

Reg. No. :											D)	ui O
------------	--	--	--	--	--	--	--	--	--	--	----	------

Question Paper Code: 40992

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018

Third Semester

Electrical and Electronics Engineering
EE 6302 – ELECTROMAGNETIC THEORY
(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. Find the unit vector extending from the origin toward the point P(3, -1, -2).
- 2. Determine the electric field intensity in free space if $\vec{D} = 30\vec{a}_x$ C/m².
- 3. Mention the properties of electric flux lines.
- 4. State the electrostatic boundary conditions at the interface between two dielectrics.
- 5. What is the total force acting on a moving charge, Q in the presence of both electric and magnetic fields.
- 6. Compare magnetic scalar potential and magnetic vector potential.
- 7. Define Reluctance and Permeability.
- 8. Distinguish between conduction and displacement currents.
- 9. Mention the practical importance of 'Skin depth'.
- 10. What is 'Standing Wave Ratio'?

PART - B

(5×13=65 Marks)

11. a) i) With neat diagrams, explain the spherical system with co-ordinates (R, θ, ϕ) . (6) ii) Apply Coulomb's law to find the electric field intensity at any point P due to a straight, uniformly charged wire of linear charge density + λ C/m. The point P is at a distance of 'h' m above the wire. **(7)** (OR) b) i) Explain the divergence of a vector field and divergence theorem. **(6)** ii) By mean of Gauss's law, determine the electric field intensity inside and outside a spherical shell of radius R. The shell contains a total charge Q uniformly distributed over the surface. **(7)** 12. a) i) Two point charges $-4 \mu C$ and $5 \mu C$ are located at (2, -1, 3) and (0, 4, -2)respectively. Find the potential at (1, 0, 1) assuming zero potential at infinity. **(6)** ii) A parallel plate capacitor has a plate separation t. The capacitance with air only between the plates is C. When a slab of thickness t' and relative permitivity ε' is placed on one of the plates, the capacitance is C' Show **(7)** (OR) b) i) Explain briefly the polarization in dielectrics. (6) ii) Derive Laplace's and Poisson's equations from Gauss's law for a linear material medium. State the importance of these equations. **(7)** 13. a) i) By means of Biot-Savart's law, derive an expression for the magnetic field intensity at any point on the line through the centre at a distance 'h' from the centre and perpendicular to the plane of a circular loop of radius 'p' and carrying current 'I.' **(6)** ii) An iron ring, 0.2 m in diameter and 10 cm² sectional area of the core, is uniformly wound with 250 turns of wire. The wire carries a current of 4 A. The relative permeability of iron is 500. Determine the value of selfinductance and the stored energy.

(OR)

	b)	1)	what is 'Magnetization'? Explain the classification of magnetic materials.	(6)			
		ii)	What is the maximum torque on a square loop of 1000 turns in a field of uniform flux density of 1 Tesla? The loop has 10 cm sides and carries a current of 3 A. What is the magnetic moment of the loop?				
14.	a. a) An iron ring with a cross-sectional area of 3cm ² and a mean circumference of 15 cm is wound with 250 turns of wire carrying a current of 0.3 A. The relative permeability of the ring is 1500. Calculate the flux established in the ring.						
			(OR)				
	b)	i)	Write a technical note on 'Transformer EMF and Motional EMF'.	(6)			
		ii)	Describe the relationship between field theory and circuit theory.	(7)			
15.	a)	i)	The electric field intensity associated with a plane wave travelling in a perfect dielectric medium is given by E_x (z, t) = $10\cos{(2\pi \times 10^7 t - 0.1\pi z)}$ V/m. What is the velocity of propagation?				
		ii)	Derive the Poynting theorem and state its significance.	(7)			
			(OR)				
	b)	W	rite short notes on the following:	4+5)			
		i)	Plane waves in lossless dielectrics.				
		ii)	Plane waves in free space.				
		iii)	Plane waves in good conductors.				
			PART – C (1×15=15 Max	rks)			
16.	a)	St	ep by step, develop a condition between				
		i)	Conductor and dielectric.				
		ii)	Dielectric and dielectric.	(15)			
			(OR)				
	b)		rom the basics, derive the expressions for Maxwell's equation in differential ad integral form.	(15)			

	What is "Magneticalities"? Exploin the absorbantion of enterestic	
	10 Math. Such area of White to specify the specific to support all analysis and the first two	
	An time and with approximational area of Jam' and a more devantments of 10 mm in wound with 250 name of wire carrying a current-of 0.3 A. The relative permeability of the ring is 1500. Calculate the flux established in the ring.	
	(20)	
	The procedure with remainment of the pounds a start of	
	 Describe the relationship between field theory and clearly thony 	
	The electric field intensity manefacted with a phase wave travelling in a perfect distincted medican in given by \mathbb{R}_+ (g. t) = 10cos (fix × 10 t - 0.1ms). What is the velocity of profequition t	181
	Derive the Psynting theorem and state its significance.	
	Write short notice on the following:	
	PART - C (1×15=15 Max	
	Stop by step, devolop a condition between	
	Q Combasta and dialocatic.	
	(RO)	
(81)	From the basics, thereo the expressions for Maxwell's equation in differential	